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Effect of constitutive laws for two-dimensional
membranes on flow-induced capsule deformation
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Three constitutive laws (Skalak et al.’s law extended to area-compressible interfaces,
Hooke’s law and the Mooney–Rivlin law) commonly used to describe the mechanics
of thin membranes are presented and compared. A small-deformation analysis of
the tension–deformation relation for uniaxial extension and for isotropic dilatation
allows us to establish a correspondence between the individual material parameters
of the laws. A large-deformation analysis indicates that the Mooney–Rivlin law is
strain softening, whereas the Skalak et al. law is strain hardening for any value of
the membrane dilatation modulus. The large deformation of a capsule suspended in
hyperbolic pure straining flow is then computed for several membrane constitutive
laws. A capsule with a Mooney–Rivlin membrane bursts through the process of
continuous elongation, whereas a capsule with a Skalak et al. membrane always
reaches a steady state in the range of parameters considered. The small-deformation
analysis of a spherical capsule embedded in a linear shear flow is modified to account
for the effect of the membrane dilatation modulus.

1. Introduction
A capsule consists of a liquid internal medium enclosed by a solid deformable

interface. Such capsules are found in nature (e.g. cells, eggs) or are manufactured
for various industrial applications (cosmetic, food or biomedical industries). The
capsules are typically suspended in another liquid. When the suspension is subjected
to flow, viscous stresses are exerted on the capsule interface, and this may lead to large
deformations and eventual burst. A major issue is the determination of the mechanical
properties of the membrane, as these control the resistance of the capsule to applied
stresses. In some cases (biological cells, polymerized interfaces), the interface thickness
is so small compared to the capsule dimensions that the membrane may be considered
as a two-dimensional solid with hyperelastic or viscoelastic properties.

A constitutive law for a two-dimensional membrane can be obtained in two dif-
ferent ways. In the first approach, the constitutive law is an extrapolation of a
three-dimensional elastic relation to a thin material (Green & Adkins 1970). For ex-
ample, the behaviour of a membrane consisting of an isotropic volume-incompressible
material may be described by the two-dimensional equivalent of the Mooney–Rivlin
law. Another approach is to postulate directly a two-dimensional constitutive law.
This has been accomplished by different authors to describe biological membranes
which are nearly area incompressible (Skalak et al. 1973; Evans 1973). Although it is
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usually used for area-incompressible membranes, the Skalak et al. law accounts sep-
arately for both shear deformation and area dilatation, and is thus a good candidate
to model membranes even when they are not area incompressible.

In the case of capsules, previous models (e.g. Li, Bartès-Biesel & Helmy 1988;
Pozrikidis 1990; Ramanujan & Pozrikidis 1998; Eggleton & Popel 1998; Quéguiner
& Barthès-Biesel 1997) have considered either a membrane that allows for area
dilatation (with a two-dimensional Mooney–Rivlin law or equivalent) or an area-
incompressible membrane (with the Skalak et al. law or an equivalent form). If the
capsule deformation is sufficiently small, all interface constitutive relations reduce
to a linear stress–strain relation, yielding the two-dimensional equivalent of Hooke’s
law. However, when a capsule undergoes large deformations, the relation between the
capsule deformation and the applied stress depends not only on the values of some
elastic parameters, but also on the mathematical form of the membrane constitutive
law. This observation leads to the following important questions:

how should different laws be compared?
how does the choice of the constitutive law affect the motion of a capsule in flow

and thus the solution of the inverse problem, i.e. the evaluation of the membrane
properties from experimental measurements?

The objective of this paper is to compare three hyperelastic laws, the two-
dimensional Hooke and Mooney–Rivlin laws, and the Skalak et al. law extended
to area-compressible membranes, and to predict how they influence the flow-induced
deformation of a capsule. The reponses of these laws to elementary deformation
(uniaxial extension and isotropic dilatation) are compared. The influence of the mem-
brane constitutive law on the global motion of a capsule in a linear shear flow is
illustrated by two examples. First, the classical model for small deformations of a
spherical capsule suspended in a viscous shear flow is adapted to account for vari-
able membrane area-dilatation modulus. Then, the large deformation of a capsule
suspended in a purely straining flow is computed for several membrane laws. It is
found that, for membranes with identical small-deformation elastic parameters, the
mathematical form of the constitutive law has a strong effect on the overall capsule
behaviour.

2. Membrane mechanics
The membrane is assumed to be an infinitely thin sheet of a material that is isotropic

in its plane and without bending resistance. It is also assumed that the membrane
reacts instantaneously to stress, so that its response is hyperelastic. The case of a
viscoelastic membrane is usually treated by adding a linear viscous contribution to
the elastic stress (Hochmuth & Waugh 1987; Barthès-Biesel & Sgaier 1985). The
equations of membrane mechanics may be expressed in terms of surface curvilinear
coordinates (Green & Adkins 1970) or of general Cartesian coordinates (Barthès-
Biesel & Rallison 1981, hereafter denoted I). This last approach is briefly presented.

The position of a membrane point is denoted by X in a reference configuration,
and by x(X , t) in the deformed state. The surface displacement gradient A is defined
as:

A = (I − nn) · ∂x
∂X
· (I −NN ), (2.1)

where N and n are the unit normal vectors to the membrane in the reference and
deformed configuration respectively, and I is the three-dimensional identity matrix.
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The surface Green–Lagrange deformation tensor e is defined as

e = 1
2
[AT · A− (I −NN )]. (2.2)

Note that e = 0 at the reference state. The tensor AT ·A has two non-zero eigenvalues
λ2

1 and λ2
2, associated with two orthogonal eigenvectors corresponding to local principal

axes of deformation in the tangential membrane plane. The principal extension ratios
λ1 and λ2 are thus measured along the principal lines of deformation:

λi =
dsi
dSi

, i = 1, 2, no summation over i,

where dSi and dsi denote line elements in the reference and deformed states. The
principal non-zero strain components e1 and e2 follow from (2.2):

ei = 1
2
(λ2
i − 1) i = 1, 2. (2.3)

The ratio Js between the deformed and undeformed local surface area is given by

Js = λ1λ2 =
√

det(AT · A+NN ). (2.4)

Following Skalak et al. (1973), two-dimensional strain invariants may be defined as

I1 = 2tr(e) = λ2
1 + λ2

2 − 2 and I2 = J2
s − 1 = λ2

1λ
2
2 − 1, (2.5)

where the definition of I1 is classical and I2 is a measure of local area dilatation.
Because the membrane is very thin, the three-dimensional stresses may be replaced

by two-dimensional elastic tensions. For example, the Cauchy tensions are forces
per unit length measured in the deformed membrane plane. The equilibrium of the
membrane then relates the Cauchy tension tensor T (x, t) to the external load q (force
per unit area of the deformed surface) exerted on the membrane:[

(I − nn) · ∂
∂x

]
· T + q = 0. (2.6)

In the case of a capsule suspended in a flowing liquid, the load is related to the jump
of the hydrodynamic stress σ across the interface by q = bσc · n (I; Pozrikidis 2001).
To close the problem, the elastic tension tensor is related to the deformation by means
of the strain energy function w(I1, I2) per unit of initial membrane area:

T =
1

Js
A · ∂w

∂e
· AT , (2.7)

or

T =
2

Js

{
∂w

∂I1

A · AT +
∂w

∂I2

J2
s (I − nn)

}
. (2.8)

In view of the assumed isotropy, the principal directions of tension and deformation
are colinear.

The generality of the above equations allows them to be used to describe arbitrary
membrane deformations. When the local radius of curvature becomes comparable to
the interface thickness, or when the main mode of deformation is due to curvature
changes, the membrane bending resistance cannot be neglected. Accounting for the
bending resistance complicates the formulation of the membrane mechanics. The
contribution of bending moments must be added to the equilibrium relation (2.6) and
a constitutive equation for the bending moments must be postulated. A comprehensive
presentation of the bending mechanics of thin membranes is given by Pozrikidis (2001).
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3. Classical constitutive laws
For each constitutive law, we discuss the tension component T1 in the principal

1-direction. The other component is obtained by interchanging the indices 1 and 2.

3.1. Two-dimensional Hooke’s law

The simplest law stems from the assumption of linear dependence of tension on
surface deformations. This is the two-dimensional equivalent of Hooke’s law (H),
restricted to small deformations:

TH
1 =

2Gs
(1− νs) (e1 + νse2) =

Gs

(1− νs) [λ2
1 − 1 + νs(λ

2
2 − 1)], (3.1)

where Gs denotes the surface shear modulus (expressed in N m−1), and νs(νs 6= 1) is
the surface Poisson ratio.

3.2. Mooney–Rivlin law

Another classical assumption is that the membrane is a very thin sheet of an isotropic
volume-incompressible rubber-like material with initially uniform thickness. This leads
to the two-dimensional Mooney–Rivlin (MR) law (Green & Adkins 1970, chap. 4
and 9) with strain energy and tension given by

wMR =
GMR

2

[
Ψ

(
I1 + 2 +

1

I2 + 1

)
+ (1−Ψ )

(
I1 + 2

I2 + 1
+ I2 + 1

)]
, (3.2)

TMR
1 =

GMR

λ1λ2

(
λ2

1 − 1

(λ1λ2)2

)[
Ψ + λ2

2(1−Ψ )
]
, (3.3)

where GMR is an elastic modulus, and Ψ is a scalar coefficient varying in the range
[0, 1] (the neo-Hookean case corresponds to Ψ = 1). The area dilatation is unrestricted
and is compensated by a corresponding thinning of the membrane.

3.3. Skalak law

To model the large deformations of a red blood cell membrane, Skalak et al. (1973)
introduced the law (SK)

wSK =
GSK

4
(I2

1 + 2I1 − 2I2 + CI2
2 ), (3.4)

TSK
1 =

GSK

λ1λ2

{λ2
1(λ

2
1 − 1) + C(λ1λ2)

2[(λ1λ2)
2 − 1]}, (3.5)

which accounts for shear deformations (first term on the right-hand side of (3.5)) and
area dilatation (second term on the right hand side of (3.5)), with associated moduli
GSK and CGSK . The red blood cell membrane has a lipid bilayer structure and is
thus almost area incompressible but easy to shear. Accordingly, Skalak et al. (1973)
postulated C � 1 and studied in detail the predictions of their law in this limit.
However, the SK law is very general and can be used to model a two-dimensional
membrane whether or not it is area incompressible.

The question now arises as to how to relate the elastic moduli of these different
laws for the purpose of comparison.



Effect of constitutive laws on flow-induced capsule deformation 215

4. Comparison of laws
In the asymptotic limit of small deformation (|ei| � 1, i = 1, 2), all hyperelastic

laws reduce to Hooke’s law (3.1), which thus arises as a reference common limit.
The asymptotic form of the MR (3.3) and SK (3.5) laws lead to the following
correspondence between parameters:

for any value of Ψ , the Mooney–Rivlin modulus GMR is equal to the shear modulus
Gs of a Hookean membrane with Poisson ratio νs = 1/2;

the Skalak modulus GSK is equal to the shear modulus Gs of a Hookean membrane,
provided that the coefficients νs and C are related by νs = C/(1 + C).

However, the three laws predict different behaviour at large deformation under
simple strains.

4.1. Uniaxial extension

A membrane sample is stretched in direction 1 only: T1 6= 0, T2 = 0. The condition
T2 = 0 allows λ2 to be expressed in terms of λ1.

Hooke’s law leads to the tension–strain relation:

TH
1 = Gs(1 + νs)(λ

2
1 − 1) = Ese1, (4.1)

where Es is the surface Young modulus, related to Gs by

Es = 2Gs(1 + νs). (4.2)

The surface Poisson ratio relates the transversal deformation e2 to the extension e1:

e2 = −νse1.

MR and SK lead, respectively, to

TMR
1 =

GMR

λ
3/2
1

(λ3
1 − 1)[Ψ + (1−Ψ )/λ1], (4.3)

TSK
1 = GSKλ1(λ

2
1 − 1)

√
1 + Cλ2

1

1 + Cλ4
1

[
1 + Cλ4

1

1 + Cλ2
1

+
C

1 + Cλ4
1

]
. (4.4)

MR and SK predict complex nonlinear relations between the tension and elongation
λ1. In the limit of small deformations, the surface Young modulus is given by

Es = 2Gs(1 + νs) = 3GMR = 2GSK
1 + 2C

1 + C
. (4.5)

4.2. Isotropic tension

A membrane sample is stretched by isotropic tensions (T1 = T2 = T ) and the
extension ratios are equal (λ1 = λ2 = λ). This type of deformation occurs during the
inflation of a spherical capsule under an isotropic positive pressure difference between
the internal and external liquids. Hooke’s law (3.1) leads to

TH = Gs
1 + νs

1− νs (λ
2 − 1) = K(λ2 − 1) = K∆A/A, (4.6)

where K is the area dilatation modulus and ∆A/A is the relative area change. Then,
MR and SK lead to

TMR =
GMR(λ4 + λ2 + 1)

λ6
(λ2 − 1)[Ψ + λ2(1−Ψ )], (4.7)

TSK = GSK(λ2 − 1)[1 + Cλ2(λ2 + 1)], (4.8)
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Figure 1. Uniaxial extension: principal tension T1 as a function of principal strain e1. Comparison
of Hooke (H), Mooney–Rivlin (MR) and Skalak et al. (SK) laws for the same value of the
small-extension Young modulus.

In the limit of small deformations, the area dilatation modulus is given by

K = Gs
1 + νs

1− νs = 3GMR = GSK(1 + 2C). (4.9)

Consequently, an area-incompressible membrane is obtained for a surface Poisson
ratio equal to unity (contrary to the three-dimensional case, where an incompressible
solid corresponds to a Poisson ratio equal to 1/2).

4.3. Large-deformation behaviour

The predictions of the three laws for uniaxial extension are studied by plotting the
tension T1/Gs as a function of the principal strain component e1 given in (2.3). Two
MR membranes (3.3) with either Ψ = 1 or 0 are compared to a SK membrane (3.5)
with C = 1 and to a Hookean membrane (3.1) with νs = 1/2 (figure 1). All membranes
thus have identical elastic parameters at small deformation. It appears that an MR
membrane is easy to extend and is strain softening. Adding a nonlinear term (Ψ = 0)
promotes the strain softening effect. The SK membrane, on the other hand, is strain
stiffening and thus requires larger tensions to achieve the same extension. The effect
of the coefficient C is illustrated in figure 2. It is interesting to note that even for
C = 0, the SK law is still strain stiffening. The curves for C = 10 and 100 are almost
superimposed. In the case of uniaxial extension, a value of C larger than 1 thus
ensures area incompressibility (C � 1).

The behaviour of the membranes under isotropic extension is illustrated in figure 3,
where T/Gs is plotted as a function of the relative area dilatation. The MR, H
(νs = 1/2) and SK (C = 1) membranes have the same area-dilatation modulus.
Because the membrane thickness is reduced during deformation, the MR membrane
is easy to dilate. This leads again to strain softening even for this type of load,
irrespective of the value Ψ . On the other hand, the SK membrane is strain hardening
(except for C = 0 where the variation of T/Gs with ∆A/A is linear). For the
same value of area dilatation, the tension in an SK membrane increases with C .
However, when scaled by the area-dilatation modulus, the tension T/K of an SK
membrane becomes nearly independent of C for C > 10. This comparison shows that
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Figure 2. Uniaxial extension: effect of the area-dilatation parameter C . Hooke’s law is shown only
for νs = 0 and is tangent to the C = 0 Skalak et al. curve. For C > 10, an asymptotic state is
reached.
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Figure 3. Isotropic tension: principal tension T/Gs as a function of relative area change. Compar-
ison of Hooke (H), Mooney–Rivlin (MR) and Skalak et al. (SK) laws. For a given level of area
change, T increases with C .

in situations where the local area change is large, the choice of a Mooney–Rivlin or
a Skalak et al. constitutive law leads to quite different predictions.

For physical stability reasons, the area dilatation modulus K must be positive
(like the three-dimensional dilatation modulus). Consequently, the two-dimensional
Poisson ratio ranges in the interval ]−1,+1[ (equation (4.9)). Zero or slightly negative
values of νs have been measured for two-dimensional membranes (Pieper, Rehage &
Barthès-Biesel 1998). Monte Carlo simulations and mean field calculations for special
polymerized networks (termed ‘auxetic’) have been performed by Boal, Seifert &
Shillock (1993) predicting negative values of νs for intermediate deformations. This
can be understood by envisioning the two-dimensional membrane as being wrinkled
in the direction perpendicular to its plane. The wrinkles are first smoothed out, and
this leads to an expansion in the lateral direction under uniaxial extension.
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More complex constitutive laws can be considered where the elastic parameters
GMR , GSK or C depend on the strain invariants.

5. Motion of a capsule freely suspended in linear shear flow
We turn now to the question of the influence of the membrane constitutive law on

the motion of a capsule in shear flow. The general problem is to determine the motion
and deformation of a capsule that is freely suspended in an unbounded linear shear
flow, with velocity u∞ in a reference frame centred on the capsule centre of mass and
moving with the capsule:

u∞ = (E +Ω) · x, (5.1)

where E and Ω are the rate of strain and vorticity tensors. This is a classical problem
for which the governing equations are well established (I; Pozrikidis 2001). The flow
of the internal liquid and suspending fluid is governed by the Stokes equations. The
boundary conditions require continuity of fluid and membrane velocity at the capsule
surface. As mentioned in § 2, the load q is equal to the jump in the viscous traction
across the interface. The fluid motion and interface deformation are thus strongly
coupled.

5.1. Small deformation of a spherical capsule

Barthès-Biesel & Rallison (I) have studied the small deformations of an initially
spherical capsule of radius a, freely suspended in the flow (5.1). To first order in
deformation, the equation of the deformed capsule profile does not depend on the
internal liquid viscosity and is given by

r2 = a2 + 2µax · J · x,
where µ is the viscosity of the suspending fluid and J is a second-order tensor to
be determined as part of the solution. This linear model has been used to analyse
experiments performed on artificial capsules (Chang & Olbricht 1993a, b) or to
validate numerical models (Eggleton & Popel 1998; Ramanujan & Pozrikidis 1998).
Two constitutive laws for the capsule membrane were considered in I: a Mooney–
Rivlin law, corresponding to νs = 1/2, and an area-incompressible law, corresponding
to νs = 1. It is of interest to extend the earlier results to arbitrary values of νs and
thus to arbitrary values of the membrane area-dilatation modulus.

In the limit of small deformations, the elastic strain energy function of the mem-
brane was assumed in I to be given by

w = w0 +
1

2
α2(ln λ1λ2)

2 + α3

[
1

2
(λ2

1 + λ2
2)− 1− ln λ1λ2

]
. (5.2)

The term (coefficient α1 in I) corresponding to constant isotropic surface tension has
been ignored. Making a correspondence between this law and the two-dimensional
Hooke’s law, we find

α2 =
2νsGs
1− νs =

νsEs

1− ν2
s

, α3 = Gs =
Es

2(1 + νs)
. (5.3)

After replacing α2 and α3 using (5.3), the equation of the capsule deformed profile is
given by

r2 = a2 + 2
5

2

µa

Gs

2 + νs

1 + νs
x · E · x = a2 + 2

µa

Es
5(2 + νs)x · E · x.
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It is clear that νs has a non-negligible effect on the overall capsule deformation (this
effect can be quite large if νs takes negative values). However, it is not possible to
separate the respective roles of Gs (or Es) and νs on the basis of a single measure of
the global deformation of a capsule in shear flow. To obtain the values of Gs and νs,
it is necessary to perform another independent experiment where the membrane is
stressed differently. For example, one may consider measuring the deformation of the
capsule due to centrifugal forces exerted in a spinning drop apparatus. In this case,
the capsule deformed profile depends on the ratio (5 + νs)/Es (Pieper et al. 1998).
When feasible, another experiment consists in creating a flat sample of membrane
and in shearing it in a surface rheometer. The value of Gs is then obtained directly
(Pieper et al. 1998).

5.2. Large deformation of a spherical capsule

A simple way of examining the effect of the membrane law when the capsule
undergoes large deformations is to consider an initially spherical capsule of radius a,
freely suspended in an axisymmetric straining flow. Thus, in (5.1), the vorticity tensor
is zero, and the only non-zero components of the rate-of-strain tensor are

E11 = 2γ̇, E22 = E33 = −γ̇. (5.4)

This problem has been solved numerically for a capsule with a MR membrane (Li
et al. 1988; Diaz, Pelekasis & Barthès-Biesel 2000), and for a capsule with an area-
incompressible membrane (Pozrikidis 1990). The deformation is determined by the
capillary number, measuring the ratio of viscous to elastic forces based on either the
shear modulus or the Young modulus:

εs = µγ̇a/Gs or εY = µγ̇a/Es.

The relation between the two capillary numbers involves the area-dilatation modulus:

εY = εs
1

2(1 + νs)
= εs

1 + C

2(1 + 2C)
.

Here, the numerical technique of Diaz et al. (2000) is used to compute the capsule
deformation D = (L − B)/(L + B), where L and B are respectively the length and
breadth of the deformed profile in a meridional plane. The method involves following
the time-dependent response of a capsule subjected to the sudden start of the flow
(5.4). Steady state is assumed to have been reached when the time derivative of D is
less than 5 × 10−4γ̇. For very elongated shapes, it was found necessary to discretize
a meridian curve into 113 elements. Details on the numerics are given by Diaz et al.
(where their expression for the elongational flow field is erroneous and shoud be the
same as (5.4)).

The steady deformation of two capsules with an MR membrane (Ψ = 1) or an SK
membrane with C = 1, are first compared in figure 4. The two membranes have the
same small-deformation behaviour. However, the membrane constitutive law has a
significant effect when the overall capsule deformation is larger than 0.2. Indeed, for
an MR membrane, a critical value of εs (of order 0.25) exists beyond which there is no
steady state and the capsule then elongates indefinitely until burst occurs. Decreasing
Ψ from 1 to 0, leads to the same effect, but the critical value of εs decreases as shown
by Li et al. (1988) for prolate ellipsoidal capsules. This phenomenon does not occur
for an SK capsule, which always reaches a steady state for all values of εs tested here.
A capsule with an SK membrane requires larger values of the shear rate to reach the
same deformation as an MR capsule. This is due to the shear stiffening behaviour of
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0.5

0 1 2 3

MR SK

D

εs ( = 3εY)

Figure 4. Numerical computation of the steady deformation of a spherical capsule in an elongational
flow. For a capsule with an MR membrane (Ψ = 1) there exists a critical value of εs past which
no steady state exists and burst occurs. The capsule with an SK membrane (C = 1) reaches an
asymptotic deformation.

an SK material. As εs increases, the SK capsule seems to reach an asymptotic value
of deformation of order 0.85 without showing any sign of an impending process of
continuous elongation. The existence of this asymptotic state may be explained in the
following way. For a given capsule, the increase of εs is obtained by increasing the
shear rate γ̇, while keeping Gs constant. As γ̇ increases, so does the deformation of the
membrane. Because of the strain hardening effect, the apparent current value Gsa of
Gs also increases (the way Gsa is computed is immaterial). It is possible that the two
effects compensate in such a way that the apparent value εsa = µγ̇a/Gsa of εs remains
roughly constant as γ̇ increases. Similarly, for the strain-softening MR membrane, as
γ̇ and the deformation increase, the apparent current value Gsa of Gs decreases. The
apparent value εsa then increases more steeply than that of εs. This may be the cause
of the continuous elongation process.

The asymptotic maximum extension ratio of the meridian is of the order of 3.5,
which is large. Values of εs larger than 3 lead to numerical problems due to shape
oscillations near the poles. In this region and for very elongated profiles, the curvature
becomes large and difficult to compute with precision. The influence of different
values of the membrane area-dilatation modulus C is investigated for SK capsules
(figure 5a, b). When D is plotted as a function of εs, the effect of C appears clearly:
it is easier to deform the capsule with C = 0 than it is with C = 10. However, when
the same deformation is plotted against εY , the three curves are almost superimposed.
This indicates that the global deformation of the capsule is governed by the Young
modulus and corresponds essentially to a uniaxial extension.

In practice, burst occurs because some break-up criterion (based on either defor-
mation or stress) for the membrane material has been exceeded. Since the numerical
model computes the deformation and tension distribution in the membrane for each
value of εs, it is possible to determine the maximum value of εs beyond which an MR
or SK capsule suspended in elongational flow will burst. However, an MR capsule
will always burst when εs exceeds the critical value of 0.25 (for Ψ = 1) because of the
continuous elongation. It should be noted that a strain-hardening behaviour of the
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Figure 5. Effect of C on the steady deformation of a capsule with an SK membrane. The capillary
number is based on the shear modulus (a) or on the Young modulus (b). �, C = 0; �, C = 1; N,
C = 10.

membrane material is not sufficient to prevent burst. Burst through continuous elon-
gation occurs because the elastic tensions past the critical deformation (corresponding
to the critical value of εs) can no longer balance the viscous tractions due to flow.
Strain hardening can prevent this type of burst if the rate of increase of the elastic
tensions with deformation is large enough to allow equilibrium between elastic and
viscous forces as the shear rate (i.e. εs) increases. As pointed out earlier, this seems to
be the case for an SK membrane.

The large deformation of a capsule suspended in a simple shear flow has been
simulated numerically by Ramanujan & Pozrikidis (1998) for particles with different
initial geometry. They used two different laws for the capsule membrane with strain
energies given either by (3.2) with Ψ = 1 or by (5.2) with coefficients α2 and α3

corresponding to νS=1/2. Since (5.2) is essentially to a polynomial expansion of
(3.2), the capsule deformation depends weakly on the type of law, as observed by
Ramanujan & Pozrikidis.
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6. Conclusion
The small-deformation analysis allows us to establish a consistent correspondence

between the material parameters of the different laws used in the literature to model
infinitely thin membranes. When a membrane is subjected to large deformations,
these laws predict quite different behaviours under uniaxial extension and isotropic
dilatation. The popular two-dimensional Mooney–Rivlin law is strain softening, due
to its three-dimensional origin, where any area dilatation is compensated by a decrease
of the membrane thickness. The Skalak et al. law has been devised to account for
shear and area dilatation. It is well suited to membranes with a bilayer structure,
which are almost area incompressible (C � 1). However, for O(1) (or even negative)
values of C , the Skalak et al. law can also be used to model membranes obtained
by interfacial polymerization. A strain stiffening behaviour is predicted, but this
effect might be realistic when a polymerized network is deformed so much that the
macromolecules are fully extended.
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